Yeast-based genetic system for functional analysis of poxvirus mRNA cap methyltransferase.

نویسندگان

  • Nayanendu Saha
  • Stewart Shuman
  • Beate Schwer
چکیده

Structural differences between poxvirus and human mRNA capping enzymes recommend cap formation as a target for antipoxviral drug discovery. Genetic and pharmacologic analysis of the poxvirus capping enzymes requires in vivo assays in which the readout depends on the capacity of the viral enzyme to catalyze cap synthesis. Here we have used the budding yeast Saccharomyces cerevisiae as a genetic model for the study of poxvirus cap guanine-N7 methyltransferase. The S. cerevisiae capping system consists of separate triphosphatase (Cet1), guanylyltransferase (Ceg1), and methyltransferase (Abd1) components. All three activities are essential for cell growth. We report that the methyltransferase domain of vaccinia virus capping enzyme (composed of catalytic vD1-C and stimulatory vD12 subunits) can function in lieu of yeast Abd1. Coexpression of both vaccinia virus subunits is required for complementation of the growth of abd1Delta cells. Previously described mutations of vD1-C and vD12 that eliminate or reduce methyltransferase activity in vitro either abolish abd1Delta complementation or elicit conditional growth defects. We have used the yeast complementation assay as the primary screen in a new round of alanine scanning of the catalytic subunit. We thereby identified several new amino acids that are critical for cap methylation activity in vivo. Studies of recombinant proteins show that the lethal vD1-C mutations do not preclude heterodimerization with vD12 but either eliminate or reduce cap methyltransferase activity in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase.

The vaccinia virus mRNA capping enzyme is a multifunctional heterodimeric protein associated with the viral polymerase that both catalyses the three steps of mRNA capping and regulates gene transcription. The structure of a subcomplex comprising the C-terminal N7-methyl-transferase (MT) domain of the large D1 subunit, the stimulatory D12 subunit and bound S-adenosyl-homocysteine (AdoHcy) has be...

متن کامل

Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase.

The N7-methylguanosine (m7G) cap is the defining structural feature of eukaryotic mRNAs. Most eukaryotic viruses that replicate in the cytoplasm, including coronaviruses, have evolved strategies to cap their RNAs. In this report, we used a yeast genetic system to functionally screen for the cap-forming enzymes encoded by severe acute respiratory syndrome (SARS) coronavirus and identified the no...

متن کامل

Characterization of human, Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases and complete replacement of the yeast capping apparatus by mammalian enzymes.

Human and fission yeast cDNAs encoding mRNA (guanine-N7) methyltransferase were identified based on similarity of the human (Hcm1p; 476 amino acids) and Schizosaccharomyces pombe (Pcm1p; 389 amino acids) polypeptides to the cap methyltransferase of Saccharomyces cerevisiae (Abd1p). Expression of PCM1 or HCM1 in S. cerevisiae complemented the lethal phenotype resulting from deletion of the ABD1 ...

متن کامل

The 5'-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation

The poly(A) leader at the 5'-untranslated region (5'-UTR) is an unusually striking feature of all poxvirus mRNAs transcribed after viral DNA replication (post-replicative mRNAs). These poly(A) leaders are non-templated and of heterogeneous lengths; and their function during poxvirus infection remains a long-standing question. Here, we discovered that a 5'-poly(A) leader conferred a selective tr...

متن کامل

Mutational analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase reveals essential contributions of the N-terminal peptide that closes over the active site.

RNA guanine-N7 methyltransferase catalyzes the third step of eukaryal mRNA capping, the transfer of a methyl group from AdoMet to GpppRNA to form m(7)GpppRNA. Mutational and crystallographic analyses of cellular and poxvirus cap methyltransferases have yielded a coherent picture of a conserved active site and determinants of substrate specificity. Models of the Michaelis complex suggest a direc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 77 13  شماره 

صفحات  -

تاریخ انتشار 2003